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ABSTRACT
This paper presents a method for design optimization of 

brass wind instruments. The shape of a trumpet’s bore is opti­
mized to improve intonation using a physics-based sound simu­
lation model. This physics-based model consists of an acoustic 
model of the resonator (input impedance), a mechanical model 
of the excitator (the lips of a virtual musician) and a model of 
the coupling between the excitator and the resonator. The har­
monic balance technique allows the computation of sounds in a 
permanent regime, representative of the shape of the resonator 
according to control parameters of the virtual musician. An op­
timization problem is formulated, in which the objective func­
tion to be minimized is the overall quality of the intonation of 
the different notes played by the instrument (deviation from the 
equal-tempered scale). The design variables are the physical 
dimensions of the resonator Given the computationally expen­
sive function evaluation and the unavailability of gradients, a 
surrogate-assisted optimization framework is implemented us-
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ing the mesh adaptive direct search algorithm (MADS). Surro­
gate models are used both to obtain promising candidates in the 
search step of MADS and to rank-order additional candidates 
generated by the poll step of MADS. The physics-based model 
is then used to determine the next design iterate. Two examples 
(with two and five design optimization variables, respectively) 
are presented to demonstrate the approach. Results show that 
significant improvement of intonation can be achieved at reason­
able computational cost. The implementation of this method for 
computer-aided instrument design is discussed, considering dif­
ferent objective functions or constraints based on intonation but 
also on the timbre of the instrument.

Keywords: musical acoustics, auto-oscillating system, into­
nation, mesh adaptive direct search, surrogate models

INTRODUCTION
The study of sound quality and playing properties of musi­

cal instruments is critical to improving the design of the latter. 
This is not a trivial task because sound quality is influenced by 
objective acoustic characteristics of the instrument and subjec-
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tive criteria related to players’ feelings, tastes and preferences. 
Two main kinds of studies aim at addressing this issue. On one 
hand, the quality can be assessed by listeners or players (subjec­
tive quality) during evaluation tests [1], When conducting this 
kind of tests, it is necessary for the researchers to control pre­
cisely the design parameters of the instrument and the testing 
environment, to assess the reliability of the evaluations, and to 
define how to deal with inter-individual differences. On the other 
hand, the quality can be quantified by physical measurements on 
the instruments (objective quality) [2],

For the brass instruments considered in this paper, the sin­
gle most important physical measurement that characterizes be­
havior is the acoustic input impedance of the resonator [2]: it 
yields the magnitude of the acoustic response to a forced oscil­
lation. It can be either measured or computed with an acous­
tic model [3], and is a function of the inner shape of the pipe 
(called the “bore”). For example, the typical input impedance 
of a trumpet presents several peaks of impedance that repre­
sent the acoustic resonances of the pipe (see Figure 1). When

FIGURE 1 . Typical input impedance Z of a Bb trumpet (magnitude), 
showing the resonances 2, 3, 4, 5 of the instrument

playing, the musician produces a sound whose frequency (i.e., 
the playing frequency) is close to the resonance frequency of 
an impedance peak [4], At first approximation, the playing fre­
quency (which influences intonation) is then mainly governed by 
the corresponding peak of impedance. The challenge for an in­
strument maker is to define a bore that will produce notes with 
precise intonation.

With this in view, many researchers have used an optimiza­
tion approach to design an instrument’s inner shape with a given 
set of properties concerning input impedance. Kausel used ge­
netic algorithms and the Rosenbrock minimization procedure to 
optimize the intonation of brass instruments [5]. Different cri­
teria for bore optimization of the trombone can be found in [6]. 
Noreland used gradient-based algorithms to optimize the into­

nation of horns using a model for impedance calculation that 
combines a one-dimensional transmission line model with a two- 
dimensional finite element model [7]. Poirson et al. propose the 
integration of subjective and objective assessments of designs 
into the optimization process [8]. A perceptual study has been 
conducted on a set of trumpets to define the target frequency ra­
tio for the resonances of impedance. However, even if valuable, 
these approaches focus only on the performance of the instru­
ment alone, neglecting a crucial element in playing an instru­
ment: the musician. The studies of Eveno et al. showed in par­
ticular that the relations between the resonance frequencies of 
the impedance and the actual frequencies of the sounds played 
by musicians can be significantly different [9], Although inter­
esting information can be given by the impedance concerning 
the intonation of an instrument, it is still very difficult to predict 
the “playability” and sound qualities of brass only based on the 
impedance.

A second approach in the characterization of a musical in­
strument is the use of a physics-based model that models not 
only the instrument, but also its interaction with the musician. 
In this context, sound simulations by physics-based modeling 
are interesting because they can simulate the function of instru­
ments in a realistic way, as far as the underlying physics are cap­
tured adequately [10]. For example, time domain simulations 
are presented in [11], where the authors investigate perceptual 
differences between simulated guitar sounds obtained by modifi­
cations of the mechanical parameters of the body. Sound simula­
tions by physics-based modeling constitute a promising means to 
study and improve the function of musical instruments, but their 
use is limited when it comes to instrument design [2],

The main objective of this work is to present a new paradigm 
for the design and optimization of brass musical instruments. 
The novelty of the approach lies in the integration of sound sim­
ulations, obtained from a physics-based model that takes into ac­
count the interaction of the instrument with a virtual musician, 
into the optimization process. To illustrate the approach, we 
will demonstrate it on a particular brass instrument, the trum­
pet. The implemented simulation method (the harmonic balance 
technique [12]) allows the computation of sounds in a permanent 
regime (auto-oscillations), which is representative of the shape of 
the resonator according to control parameters of the virtual mu­
sician embouchure (the mechanical parameters of the excitatory 
system). Playing frequencies and the spectra of different notes of 
the tessitura of a trumpet can then be characterized using these 
simulations. Various virtual embouchures, that lead to conver­
gence of the system toward auto-oscillations, are considered to 
produce simulations that are representative of the resonator. Due 
to the high computational cost of this approach and the difficulty 
to estimate gradients due to the stochastic nature of the objec­
tive function of the optimization problem, a surrogate-assisted 
optimization framework that utilizes the derivative-free Mesh- 
Adaptive Direct Search (MADS) algorithm is adopted.
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The paper is organized as follows. We first present ex­
tended details about the trumpet’s function, the physics-based 
brass model and the simulation technique to clarify the sound 
simulation method. We then formulate the optimization prob­
lem and describe the principles of the MADS algorithm and the 
framework for surrogate-assisted optimization. Finally, we con­
duct two case studies concerning the shape optimization of trum­
pets with two and five design variables, respectively, and draw 
conclusions.

TRUMPET MODELING
Brass instruments are wind instruments that produce sounds 

by the coupling of an excitator (the lips of the musician) to a 
resonator (the body of the instrument). The main parts of the 
resonator are the mouthpiece (a short removable piece of metal 
on which the musicians place their lips), the leadpipe (a roughly 
conical part, essential to the intonation of the instrument), and the 
flaring bell (see Figure 2). Three valves are necessary to adjust

FIGURE 2. Definition of the main parts of the trumpet: the mouth­
piece (in grey), the leadpipe (in black) and the flaring bell

the length of the resonator and to obtain chromatic scales.
The characteristics of a played note and its timbre depend 

mainly on the inner shape of the resonator (the bore) and, of 
course, on the musician’s technical ability and skill. From a pres­
sure Pm in the mouth of the musician (typical values measured 
on trumpet players are from 1 kPa to about 12 kPa), the lips act 
as a vibrating valve that modulates the air flow into the instru­
ment [2], The column of air in the instrument vibrates, according 
to the resonance frequencies of the resonator. A regime of oscil­
lations is created as a result o f the complex coupling between 
the resonator and the lips. It is important to mention that this 
coupling is the result of the reaction of the resonator on the lips: 
vibrations of the lips are facilitated at frequencies which corre­
spond to the resonance frequencies of the bore. With the same 
bore, several notes can be obtained, corresponding to different 
regimes of oscillations governed by the resonance frequencies. 
To obtain a chromatic scale (all 12 possible notes included in an 
octave), the musician uses valves that change the bore length,

thus the resonance frequencies.
From an acoustic point of view, the resonator alone can be 

characterized by its input impedance Z, showing the resonance 
frequencies of the bore (see Figure 1). It represents the response 
of the instrument in forced oscillations for a given frequency 
range and shows several peaks (corresponding to resonances) 
that are used to play the different notes. Z can be either mea­
sured on a real instrument [13] or modeled using an acoustic 
model of the wave propagation in the resonator. From the defini­
tion of the geometry of the resonator, the input impedance can be 
computed using the transmission line modeling [3], This model 
considers the inner shape of the instrument as a concatenation 
of simple geometries as cylinders, cones, Bessel horns, expo­
nential horns and discontinuities (see Figure 3 for an example of 
the bore geometry of a trumpet), for which the expressions of 
the input impedance are explicit with a transfer matrix modeling. 
The input impedance of the entire instrument is finally computed

FIGURE 3. Bore geometry of a trumpet, described as a series o f con­
ical and cylindrical segments

by taking the product of the matrices of all the elements (trans­
fer matrix of a horn). The model considered in this paper takes 
into account plane-wave propagation and visco-thermal losses, 
but more advanced models with bents, wall energy losses, and 
multi-modal approaches for flaring-bells could be utilized.

Physics-based Model
The physics-based model of brass instruments available in 

the literature is given by

p(jco) = (1)

(2)
dt2 Qi dt Hi
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and v{t) = bH(t) 2 (Pm-p(t))
P

(3)

These three equations represent the behavior of the different parts 
of the system [2]. They couple three time-varying variables: the 
opening height Hit) of the two lips, the volume flow vit) and 
the pressure pit), in the mouthpiece. Equation (1), with the fre­
quency domain notation, describes the acoustic behavior of the 
resonator. It represents the impedance Z of the instrument, de­
fined as the ratio of acoustic pressure in the mouthpiece p(jco) to 
the acoustic volume flow v(jco) entering the instrument. Equation 
(2) describes the mechanical behavior of the lips of the musician 
considered as a mechanical oscillator with one degree of free­
dom. Said degree of freedom is the opening height H(t) between 
the two lips (H(t) = 0 is numerically imposed if H(t) < 0). Equa­
tion (3) describes the coupling between the lips and the trumpet. 
Obtained by expressing the Bernoulli theorem, it represents a 
nonlinear coupling between the pressure in the mouthpiece pit), 
the opening height of the lips //(/), and the volume flow v(t).

More elaborate models can be developed by refining the de­
scription of the system. However, this basic model is sufficient 
to represent the underlying physics of brass instruments. Sev­
eral parameters are introduced in this model: (1) the parameters 
concerning the musician’s embouchure are Pm (the pressure in 
the mouth), /  (the resonance frequency of the lips), pi (the area 
density of the lips), b (the width of the lips), Hq (the rest value 
of the opening height of the lips), Qi (the quality factor of the 
resonance of the lips); (2) the input impedance Z of the trumpet 
and (3) the air density p. Numerical solutions p(t) of this system 
of equations can be computed to simulate the sound created by a 
given trumpet (defined by its input impedance Z) and for a given 
“virtual musician embouchure” (defined by its control parame­
ters).

plitudes of the harmonics An, the phases and the playing fre­
quency F. A  numerical solution p(t) of the auto-oscillating sys­
tem satisfying the equations (1), (2) and (3) can be defined if the 
system converges towards a stable solution (more details can be 
found in [12]).

Control Parameters of the Simulations
To perform a sound simulation, it is necessary to define the 

relevant values (i.e., the values that lead to a convergence towards 
a steady-state sound for a given note) for the parameters of the 
musician embouchure (in other words, it is necessary to “teach” 
the computer how to play the trumpet). For a given note, the 
experience shows that many embouchures may lead to a steady- 
state note. The choice of the ranges of the parameters is based 
both on numerical tests of the simulations and on measurements 
on real trumpet players. In this study the values of b, Qi, Ho are 
considered as fixed [14]. The three variables Pm, pi and /  are 
considered as control parameters of the simulations, and consti­
tute the virtual embouchure. As for a real trumpet player, the 
pressure Pm in the mouth influences mainly the dynamics of a 
simulated sound. Since experimental measurements on real mu­
sicians provided maximum values around 12 kPa for the pressure 
in the mouth, the range of values selected in this study runs from 
6 kPa to 9 kPa which corresponds roughly to mezzoforte (m f ) 
dynamics. The values of pi range from 1 to 6 kg/nr [14]. Fi­
nally, the frequency of the lips /  is the parameter that allows the 
selection of the played regime (note): the higher the value of / ,  
the higher the simulated regime. Exploration tests led to a range 
for /  that spans from 130 Hz to 480 Hz to simulate the 2nd, 3rd, 
4th and 5th regime of the Bb trumpet with no valve pressed, the 
regimes considered in this study. These regimes correspond to 
the musical notes Bb3, F4, Bb4, D5 -  concert-pitch, see Figure 4.

Simulations Using the Harmonic Balance Technique
The harmonic balance technique is a particular method used 

to obtain numerical solutions of the physics-based model de­
scribed above. This technique simulates sounds in a permanent 
regime (steady state) in the frequency domain. The principle is to 
compute (if it exists) a converging periodic solution of the pres­
sure pit) of the system, taking into account a given finite number 
N  of harmonics in a truncated Fourier series (Equation (4)):

N

pit) = ^ Ancos(2miFt + ipn). (4)
n= 1

Assuming that the solution pit) of the system of equations 
is harmonic, the unknown values of the simulations are the am-

mf

FIGURE 4. Musical notation of the notes Bb3, F4, Bb4 and D5 of the 
Bb trumpet that are simulated in this study

A summary of the values of the control parameter consid­
ered in this study are given in Table 1. These values were se­
lected because they generally lead to a convergence of the auto­
oscillations toward a periodic solution.

Given that the impedance model is limited in frequency (see 
Figure 1), it is not relevant to consider many harmonics for 
the sound simulation. Above 3000 Hz, the magnitude of the
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TABLE 1. Values o f the control parameters for the simulations con­
sidered in the study (virtual musician embouchure)

Definition Notation Value

Resonance frequency of the lips / ( Hz) 130 to 480

Mass per area of the lips Hi (kg/m2) 1 to 6

Pressure in the mouth Pm (kPa) 6 to 9

Width of the lips b (mm) 10

Rest value of the opening height Ho (mm) 0.1

Quality factor of the resonance Qi 3

impedance is flat and no difference between trumpets is notice­
able. Therefore, the number N o f harmonics considered for the 
simulations has been bounded to 3000 Hz. For the two highest 
notes, Bb4 (466.16 Hz) and D5 (587.33 Hz), this allows roughly 
the computation of 5 or 6 harmonics. All the sounds have thus 
been simulated with N =6 harmonics. In conclusion, for a given 
trumpet (characterized by its input impedance Z) and for a vir­
tual musician embouchure (characterized by the parameters Pm, 
Hi, fi, b, Ho and <2/), the simulations generate 1 note, correspond­
ing to one of the regimes 2, 3, 4 and 5 of the trumpet. Each note 
is characterized by its playing frequency F and by the amplitudes 
and phases of its 6 first harmonics.

OPTIMIZATION PROBLEM FORMULATION
The design optimization problem of an instrument can be 

formulated as

min J(x), (5)
xeQ

where J : P" -> P is the objective function, and x represents the 
design parameters of the instrument. The design space Q is a sub­
set of R" delimited by box (bound) constraints. Specifically, the 
optimization variables are the geometric parameters that define 
the inner shape of the bore (see Figure 3). To facilitate the in­
put impedance calculations, the bore is approximated by a series 
of conical and cylindrical waveguide segments. Consequently, x 
is a vector of geometric quantities such as the lengths and radii 
of cylinders or cones. Q corresponds to constraints applied on 
x to obtain viable trumpet shapes. The objective function J is 
a criterion that represents the intonation of the instrument: it is 
computed from the playing frequencies F produced by the sim­
ulations for the different regimes of the instrument (see Figure 
5).

Computation of the Objective Function
The flowchart of the process for optimizing the shape of a 

trumpet bore using physics-based sound simulations is depicted 
in Figure 5. The input impedance is computed based on the de-

Set <p of embouchures 
(Pm, pi, fl)

End

FIGURE 5. Flowchart of the optimization process

sign vector x representing the resonator’s geometry. The har­
monic balance technique simulates P different notes based on the 
calculated input impedance Z(x) and some virtual embouchures 
chosen in a set <p o f possible embouchures (see next paragraph for 
their definition). While various virtual embouchures are consid­
ered, only the ones that lead to convergence of the system toward 
auto-oscillations are selected. This selection process is a crucial 
step in the method and is described in more detail in the next 
paragraph.

For each note /, the average (across different embouchures) 
playing frequency Fi(x,<p) is computed. The intonation of the 
note is assessed by the deviation of the expected playing fre­
quency from the actual playing frequency as simulated using the 
physics-based model. To compute this deviation, the cent log­
arithmic unit is used because it is standard to compare musical 
pitches (there are no scaling issues), given that human perception 
of pitches is based on frequency ratios (one cent corresponds to a 
frequency ratio equal to a hundredth of a semitone). To compute 
this deviation, a reference (tuning) note and a reference scale 
(considered as the correct intonation) are necessary. Trumpet 
players tune generally their instrument on the 4th regime of the 
trumpet with no valve pressed (Bb4, concert pitch), so it is used 
as the reference note. The equal-tempered scale (which means 
that the octave is divided in 12 equal semi-tones) is chosen as 
the reference scale given its worldwide use in occidental music. 
While it is possible to consider customized musical temperament 
for a particular trumpet player, such consideration is beyond the 
scope of this paper. For every note /, the equal-tempered devia­
tion between the average frequency of the ilh note, F,(x, <p), and 
the reference frequency Fref(x, <p) is given by

ETD(x, /,<p) = aref—,i -  n00.log2 ( = = ) ,  (6)
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where aref^ i is the difference between the reference note re f  and 
the targeted note i given by the equal-tempered scale (-500 cents 
for example between Bb4 and F4 between which the interval is a 
descending fourth). The objective function J(x,<p) for the whole 
instrument is the average of the absolute deviation across the (P- 
1) notes (note that the deviation between the reference note and 
the 4th note is always equal to zero):

J(x, <p) = ^  N o t e s . (7)

The main challenge in the proposed approach lies in the con­
vergence of the simulations toward auto-oscillations. This refers 
to the instability of nonlinear systems for which no theoretical 
solutions are available. For a given instrument geometry, ap­
propriate virtual embouchures must be selected to ensure that 
the simulations converge toward a sound in a permanent regime. 
Furthermore, similar to an inexperienced player that would blow 
a trumpet with a terrible sound, the virtual embouchure must be 
carefully selected in order to produce realistic sounds. A prepro­
cessing of the simulations is thus necessary to obtain, for differ­
ent geometries of instruments, a set of appropriate embouchures 
that converge toward realistic sounds. To that end, a criterion has 
been defined to represent the amplitude of the simulated sound 
relatively to the pressure in the mouth. If the amplitudes of the 
harmonics are large enough relative to the mouth pressure Pm 
produced by the virtual musician, the embouchure is considered 
appropriate. For a given note, a sound is considered realistic if

Ye A?
------——-  > Threshold. (8)

Pm

An exploration of the design space according to the em­
bouchure parameters is carried out to determine the threshold 
for each note and to build a map of appropriate embouchure- 
geometry couples. If x is in P2, the space to explore has 5 dimen­
sions: 2 geometric variables and 3 embouchure variables (Pm, ///, 
//). To explore this space, a five-dimensional Latin hypercube is 
built and every sample is simulated. This constitutes the prepro­
cessing of the parameters of the simulations. The thresholds are 
adjusted to select 10% of the simulated sounds for a given note. 
A map of appropriate embouchure-geometry couples is drawn 
from the previously selected sounds (using a Gaussian mixture 
model that fits the distribution).

It is important to mention that the average playing fre­
quency Fj(x,<p) is an average value across a finite set of em­
bouchures. Furthermore, this set o f embouchures is not deter­
ministic, given that the preprocessing determination of appropri­
ate embouchures is stochastic (random sampling using the Gaus­
sian mixture model). The consequence is that the objective func­
tion J(x) is not deterministic (two consecutive calculations may

give different results). In practice, a set of 100 embouchures is 
simulated to provide an estimation of Ffx, <p) for one note. To 
compute the value of the objective function from one specific 
value of x, it takes a CPU time of about 11 minutes using a 1.7 
GHz Intel Core i7 with 8 Go 1600 MHz DDR3 Ram on OS X.

SURROGATE-ASSISTED DERIVATIVE-FREE OPTI­
MIZATION METHODOLOGY

Since the objective function is the result of a stochastic sim­
ulation, derivatives are not available and cannot be approximated 
reliably. Therefore, we use a rigorous derivative-free algorithm 
with convergence properties, MADS [15-17], available via the 
NOMAD software. This algorithm is based on the search-and- 
poll paradigm introduced in [18]. The search step can implement 
any user-defined method to obtain promising candidates. The 
poll step determines candidates around the incumbent solution; 
it ensures the convergence of the algorithm towards a local opti­
mum. In this work, we use a variation of the surrogate-assisted 
optimization framework proposed in [19]. The basic idea is that 
we use surrogate models of the “true” physics-based sound simu­
lation model to i) formulate and solve a surrogate problem in the 
search step to obtain a promising candidate and ii) rank-order 
the candidates generated by the poll step. We then use the “true” 
physics-based sound simulation model to evaluate opportunisti­
cally all these candidates in order to determine the next iterate.

Mesh Adaptive Direct Search
At each iteration k of the MADS algorithm, the trial points 

must lie on a mesh Mk defined as

Mk = {x + A fD z  : z € N”B,x  e X/;} c  R", (9)

where A™ is the mesh size parameter, the columns of D € W xnD 
form apositive spanning set of no directions in R" [17], and X* = 
{xi,X2, ..., x^} c  R" denotes the set of points already evaluated.

During each search step, an ensemble of surrogate models 
of the “true” physics-based sound simulation model use to eval­
uate the objective function J  is built using previous evaluations. 
The considered ensemble of surrogate models is described in the 
next section. The best surrogate model is selected, and a second 
instance of MADS is used to obtain the design that minimizes it. 
This design is then projected on the mesh Mk and evaluated using 
the “true” physics-based sound simulation model. If this candi­
date leads to an improvement of the solution, the surrogate model 
ensemble is updated, and the search is repeated. Otherwise, the 
algorithm continues with the poll step.

During each poll step, the poll set is defined as / /  = {x* + 
A^d, d € Dk), where Dk is a set of normalized directions such that 
these directions are positively spanning of R” such that / /  c  A /;

Copyright ©  2016 by ASME



the interested reader can refer to [15] for details. The poll set is 
then sorted using the surrogate model, and the points are eval­
uated using the "true" physics-based sound simulation model in 
an opportunisite manner, which means that the evaluation of Pk 
is interrupted if a candidate leads to an improvement of the solu­
tion. In this case, the mesh and poll size parameters are increased 
so that the algorithm progresses faster toward a better solution. 
Otherwise, these parameters are reduced, which means that the 
next poll will look for trial points in a closer neighborhood. A 
fundamental aspect of the MADS algorithm is that the mesh size 
decreases faster than the poll size, which means that the set of 
polling direction becomes dense in R” once normalized (see Fig­
ure 6).

FIGURE 6. MADS poll and mesh sizes for a two-dimensional prob­
lem

TABLE 2. List of surrogate models built during the search step

# Model Degree Ridge Distance Kernel

type param. .1 param. r <b(d)

1 1 0

2 1 1/1000

3 PRS 2 0 N.A. N.A.

4 2 1/1000

5 3 0

6 6 1/1000

7 0.3

8 1.0 -r d̂2e
9

RBF 1 1/1000
3.0

10 10.0

11
N.A.

d

12 d\og(d)

13 04

14 0.3

15 KS N.A. N.A. 1.0 -?d2e

16 3.0

17 10.0

Surrogate Models

To build a robust and accurate surrogate model of the "true” 
objective function, we rely on an ensemble of surrogate mod­
els [20-22], At the beginning of each search step, 17 different 
surrogate models (see Table 2) are built. For each of these mod­
els, an error metric is computed to enable the selection of the 
best model. The selected model is then used in the search step to 
provide an interesting candidate and in the poll step to order the 
poll candidates.

The rationale behind updating all surrogates at every iter­
ation is that the best model can vary. The surrogates are built 
using three different modeling techniques: Polynomial Response 
Surfaces (PRSs) [22-24], Kernel Smoothing (KS) [22,25], and 
Radial Basis Functions ( RBFs) [22-24,26,27]. For each of these 
modeling methods, previosuly generated data [X,./(X)] are used 
to build a surrogate J of the function J.

Polynom ial Response Surfaces A PRS model is a 
linear composition of polynomial basis functions

?
j(x) = J ] c Jhlj RS(x), (10)

./=1

where the coefficients c = {Cj}j=\...q € 17 are computed by Ordi­
nary Least Squares (OLS) to minimize

p 2 «
^(/(x0-^(x0) + Â ¾ .  (ID
/=1 j  i

where À is a ridge parameter (typically, À -  0.001), which al­
lows to regularize the OLS system, especially when the number 
of training points is smaller than the number of basis functions. 
The degree of the PRS defines the maximum degree of the poly­
nomials {h™ \j=  i...q, which are chosen to form a basis of the
polynomial vector space for that given degree.
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Since the objective function is not smooth, a PRS of high 
degree may have a tendency to over-fit the data. In other words, 
a higher PRS degree may lead to a higher cross-validation er­
ror. The ridge parameter can be fine-tuned to minimize cross- 
validation error, but this process is time-expensive. In this study, 
the accuracy of the surrogate is attained by building several mod­
els rather than by fine-tuning their parameters. For this reason, 
surrogates 1-6 in Table 2) are PRS models of various degrees and 
ridge parameter values.

Radial Basis Functions RBF models are linear combi­
nations of PRS basis functions and radial basis functions

q PRS q RBF

j(x) = £  c f  5 (x)+  £  c f FhRBF(x). (12) 
7 I 7=1

Unlike most RBF model formulations [22,26,27], qRKF is chosen 
so that qRBF + qPRS < p  which means that there is not one radial 
basis function per training point, and that this model does not 
necessarily match the value of J  at the training points. However, 
this allows to limit the number of basis functions and the time 
necessary to compute the coefficients of the model. As for PRS 
models, these coefficients are computed by minimizing the error 
described in Equation (11). Consequently, for RBF models, the 
ridge parameter and the degree of the PRS must be specified as 
parameters of the model (see Table 2). In this work, the degree 
of the PRS in an RBF model is always 1. The functions hRBF 
are radial basis functions of the form hRBF(x) = 0(||x,xj||) where
the points {x }̂;=1...9rbf are a subset of X selected greedily to
maximize the distance between the points within this subset. The 
function <j>(d) is either a Gaussian kernel of shape parameter r, 
(models 7 to 10) or an harmonic spline of order 1 or 2 (models 
11 and 12, respectively) [26],

Kernel Smoothing The Kernel Smoothing prediction in 
x is a weighted average of all observations ./(X), where the 
weight assigned to an observation decreases when its distance 
from x increases. Formally, we have

I ,Pj=1Wj(x)J(Xj)
/(X) = — ^ ,  Where w /x )  = </K||x-x;||2). (13)

2 /= i wM )

As for some of the RBF models, <p is a Gaussian kernel <p(d) = 
exp(-r2d2), where r is a shape parameter that controls the 
amount of smoothing in the model.

model. The first metric is the Leave-One-Out Cross-Validation 
Root Mean Square Error (also named PRESS [28-30]):

E PRESS =
A P U

(14)

where 7(~0 is the model built by leaving out the observation 
[x„ ./(x, )]. This error metric allows to quantify not only the error 
of the model on the training point but also its predictive error. 
The second error metric, inspired by [31], is the Leave-One-Out 
Cross-Validation Order Error (OE-CV) which is based on the as­
sumption that the error between y  and J  is less important than 
the ability of the model to correctly order two candidates. This 
metric is defined as

Eoe- cv = -f(xj) < J(xj) xor / “^(x,) < f ~ J>(x/) ), (15)
P i j

where xor is the logical “exclusive or” operator. In other 
words, the error will be high if there are many couples (x„x7) 
for which the sign of 7(x,) -  J(xj) is different from that of 
J^'Hx,) -  j (~P(xj). The value of Eoe- cv is bounded by [0,1]. 
We observe that if Eoe- cv > 1/2, then J  is less accurate than its 
opposite function.

EXAMPLES
Two design problems are considered: one with two design 

optimization variables (2-d) and one with five (5-d). For the 2-d 
problem, an exhaustive computation of the objective function on 
a fine discretization of the design space is tractable. It is therefore 
possible to assess the quality of the optimal solution with respect 
to the global optimum obtained using the exhaustive enumera­
tion. The 5-d problem corresponds to a more realistic design 
problem. For both problems, the initial guess Xjnjt corresponds 
to the geometry of the Yamaha 6335 trumpet (measured using 
balls and calipers). The optimal bores are compared to this ge­
ometry to assess the quality of the results. However, the exact 
bore geometry of the Yamaha trumpet is not available due to 
proprietary issues. The comparison is thus made relative to an 
approximate measurement of this trumpet. We assign a budget 
of 100 objective function evaluations using the “true” physics- 
based sound simulation model to both problems to investigate 
the performance of the optimization methodology at reasonable 
computational cost (approximately 1,200 CPU minutes).

Selection of the Best Surrogate Model Two error 
metrics are considered in this work to select the best surrogate

Design Optimization Problem with 2 Variables
The design variables concern two diameters of the leadpipe 

of a Bb trumpet, an important part of the bore that connects the

8 Copyright ©  2016 by ASME



mouthpiece to the tuning slide (see Figure 2). This part, roughly 
conical, has a significant influence on the intonation and timbre 
of the instrument [10]. The impact of the two design variables 
on the geometry of the bore is illustrated in Figure 7. The first

FIGURE 7. Representation of the leadpipe inner radius along the in­
strument axis; each color corresponds to the optimum provided by one 
of the 4 methods and the black dotted line to the initial geometry (mea­
sured on the Yamaha trumpet)

adjustable radius (axial position of 0.16m) spans from 4mm to 
5.8mm while the second (axial position of 0.24m) spans from 
4.8mm to 6.6mm. The rest of the trumpet corresponds to mea­
surements made on a Yamaha 6335 trumpet with a Yamaha 15C4 
mouthpiece (see Figure 3 for the complete bore profile).

A single evaluation of the objective function J(x) over the 
entire discretized design space (with a granularity of 0.01mm) is 
plotted in Figure 8. The objective function has a global optimum 
of 3 cents at x = [4.8 5.5] (in mm). The maximum of J(x) in the 
design space is 27 cents. The leadpipe geometry corresponding 
to the initial point (Yamaha trumpet) is represented by a black 
dotted line in Figure 7. Its position on the objective function 
surface is denoted by the black cross on Figure 8.

Four optimization strategies are tested. The ones nicknamed 
“None” and “Quad” use the official NOMAD release 3.7.2 where 
the search step is omitted or where it employs local quadratic 
surrogate models, respectively. The strategies based on the use 
of the ensemble of surrogates tested with the two error metrics 
are named after the error metric, i.e., “PRESS” and “OE-CV”.

The history plot of the objective function for each optimiza­
tion strategy is shown in Figure 9. The best objective is obtained 
using “PRESS”; detailed intonation improvements obtained with 
this strategy are shown in Figure 10. The optimal objective func­
tion value is 1.6 cents at x = [4.65 5.6] (in mm). The average 
intonation improvement is 3.4 cents, which is below the just no­
ticeable difference (JND) in pitch (5 cents). Nevertheless, it is 
important to mention that the intonation improvements on the 3rd

FIGURE 8. Exhaustive computation of the objective function for the 
two-dimensional design example; the black cross denotes initial geom­
etry; the other dots denote the optimizers of the 4 employed strategies
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FIG U RE 9. Evolution of the objective in the 2-d problem

and 5th notes are greater than 5 cents, which is above the JND. 
The performance gains provided by the simulations are then cer­
tainly audible. Note that the deviation of the 4th note is zero 
because this note is chosen as the tuning reference. The 100 
evaluations took around 20 hours on a 1.7 Ghz Intel Core i7 with 
8 Go 1600 MHz DDR3 Ram on OS X for all four strategies.
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8

2nd Nte.

FIGURE 10. Details of the intonation improvements obtained using 
the PRESS method for the 2-d case; the dark blue columns correspond 
to the initial geometry while the thiner cyan columns correspond to the 
optimum; the left column is the objective function value while the 4 
other columns represent the detailed absolute value of the ETDs

Design Optimization Problem with 5 Variables
The five design variables concern the leadpipe and the 

mouthpiece. On the leadpipe, five parts of equal length 
(/=44mm) are considered. The design variables are the inner 
radii of the leadpipe at the connection between two parts (4 vari­
ables out of 6 control points because the initial and last control 
points are respectively fixed to 4.8 and 5.6mm). This 4 inner radii 
values span from 3.8 to 6.6 mm. The last variable corresponds 
to the depth of the mouthpiece (length of the cylinder before the 
cup of the mouthpiece) which spans from 0 to 6mm. The rest of 
the trumpet is as in the 2-d example.

The performance of the 4 strategies is presented in Figure 11 
as for the 2-d problem. The OE-CV strategy yields the best de­
sign. The optimal objective function value is 0.7 cents improving 
the overall intonation by 6.7 cents. The detailed intonation im­
provements obtained with this method are shown in Figure 12 
and the final optimum is x=[2.62 5.93 3.95 5.97 6] (in mm).

Discussion
The results are very promising and show significant im­

provements in the intonation of the instrument in both cases. The 
solution of the 2-d problem improves the objective by up to 66%. 
For the 5-d problem the objective is improved by up to 90%. The 
optimizers of the 2-d problem, which is quite interesting from 
the instrument maker’s point of view, are close to the global op­
timizer as can be seen in Figure 8. This demonstrates that the al­
gorithm formulations converge toward the minimum (recall that
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FIGURE 11. Evolution of the objective in the 5-d problem

12

J(x) ETD 3,d Nte. 4th Nte. 5th Nte. 
2nd Nte.

FIGURE 12. Details of the intonation improvements of the OE-CV 
algorithm for the 5-d case; the dark blue columns correspond to the ini­
tial geometry while the thiner cyan columns correspond to the optimum 
design; the left column is the objective function value while the 4 other 
columns represent the detailed absolute value of the ETDs

the computation budget was limited to 100 '‘true” model function 
evaluations). The ensemble surrogate strategies are the most suc­
cessful in both cases (“PRESS” for the 2-d and “OE-CV” for the 
5-d). From the acoustics point of view, it is comforting to observe 
that for the 5-d problem, the optimum improves the intonation of 
every note. For the 2-d problem, even if the 2nd note plays less 
in tune, the overall intonation is homogeneous and greatly im­
proved. The optimal designs for the 2-d problem are plausible. 
For the 5-d problem, the optimum is a bit counterintuitive since 
the leadpipe does not have a positive slope along the whole trum­
pet axis (the diameter at the first control point, 5.93mm, is larger
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than at the previous and next control point, respectively 4.8mm 
and 3.95mm). This kind of form for a leadpipe is not common 
among trumpets because they are very difficult to manufacture. 
It is remarkable to note that the optimization algorithm was able 
to explore the design space in order to find interesting exotic de­
signs which significantly improve the instrument intonation. Fi­
nally, the 3 additional degrees of freedom considered in the 5-d 
problem seem to improve the capability of the algorithm to find 
a better optimum.

CONCLUSIONS
This work proposes a new paradigm for design optimization 

of brass instruments. The originality of the approach lies in the 
fact that the objective function is not limited to a characterization 
of the instrument alone, but is based on the complex interaction 
between the instrument and the musician. The main challenge 
consists in the integration of physics-based simulations in an iter­
ative optimization loop, which requires that simulations converge 
toward auto-oscillations for every considered point of the design 
space. This property is ensured by means of a pre-processing step 
of the virtual embouchures of the musician and a stochastic ap­
proach that assesses the objective function using a Monte Carlo 
method. The sound simulations are conducted using a physics- 
based model that relies on the harmonic balance technique. This 
allows to define the objective function by computing the global 
instrument’s intonation for a set of different virtual embouchure. 
The MADS optimization algorithm is used, and different formu­
lations of the surrogate-based search step have been tested to im­
prove its efficiency. The results are encouraging both from an 
acoustics and from an algorithmic point of view. The intonation 
improvements are significant, and the obtained optimal designs 
are rational.

This work can be extended in many directions. Regarding 
acoustics, more design variables can be considered, in particular 
with respect to the mouthpiece. One could modify its thinnest 
radius and the length proportion between the hemisphere and the 
divergent cone. Another direction considers the objective func­
tion. Since a sound in a permanent regime provides us with the 
amplitudes of the harmonics, objective functions based on the 
instrument timbre can be formulated. The influence of some em­
bouchure parameters on the optimal solutions can also be con­
sidered, for example the intonation variations under a modifica­
tion of the embouchure’s dynamics. As several sound quality 
descriptors are available, a bi-objective optimization or an opti­
mization of one descriptor subject to constraints based on some 
other descriptors would be a natural consideration. In particular, 
it would be interesting to investigate a timbre descriptor under an 
intonation constraint, because trumpeters may be able to accept a 
slightly out-of-tune trumpet if its “global” sound is outstanding. 
Concerning the optimization process, it may be interesting to use 
the two metrics “PRESS” and “OE-CV” for aggregating different

models instead of selecting only one. Moreover, if constrained 
problems are considered, an ensemble of models may be very 
effective for selecting different surrogates for different functions 
(objective and constraints).
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