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Abstract We present a new, freely available, multimodal
corpus for research into, amongst other areas, real-time real-
istic interaction between humans in online virtual environ-
ments. The specific corpus scenario focuses on an online
dance class application scenario where students, with avatars
driven by whatever 3D capture technology is locally avail-
able to them, can learn choreographies with teacher guid-
ance in an online virtual dance studio. As the dance corpus is
focused on this scenario, it consists of student/teacher dance
choreographies concurrently captured at two different sites
using a variety of media modalities, including synchronised
audio rigs, multiple cameras, wearable inertial measurement
devices and depth sensors. In the corpus, each of the sev-
eral dancers performs a number of fixed choreographies,
which are graded according to a number of specific evaluation
criteria. In addition, ground-truth dance choreography anno-
tations are provided. Furthermore, for unsynchronised sensor
modalities, the corpus also includes distinctive events for data
stream synchronisation. The total duration of the recorded

S. Essid (B) · T. Fillon · A. Dielmann · R. Tournemenne ·
A. Masurelle · G. Richard
Institut Telecom/Telecom ParisTech, CNRS-LTCI, Paris, France
e-mail: slim.essid@telecom-paristech.fr

X. Lin · G. Kordelas · A. Aksay · Q. Zhang · V. Kitanovski ·
E. Izquierdo
Multimedia and Vision Group (MMV),
Queen Mary University, London, UK

M. Gowing · P. Kelly · N. E. O’Connor
CLARITY, Centre for Sensor Web Technologies,
Dublin City University, Dublin, Ireland

G. Kordelas · P. Daras
Centre for Research and Technology-Hellas,
Informatics and Telematics Institute, Thessaloníki, Greece

content is 1 h and 40 min for each single sensor, amounting
to 55 h of recordings across all sensors. Although the dance
corpus is tailored specifically for an online dance class appli-
cation scenario, the data is free to download and use for any
research and development purposes.
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1 Introduction

The 3DLife Network of Excellence is a European Union
funded research project that aims to integrate research that
is currently conducted by leading European research groups
in the field of Media Internet. Within 3DLife we believe that
it is time to move social networking towards the next logical
step in its evolution: to immersive collaborative environments
that support real-time realistic interaction between humans
in online virtual and augmented environments.

To achieve this goal 3DLife, partnered by Huawei, has pro-
posed a grand challenge to the research community in con-
junction with the ACM Multimedia Grand Challenge 2011.
The ACM Multimedia Grand Challenges are a set of prob-
lems and issues from industry leaders, geared to engaging the
research community in adressing relevant, interesting and
challenging questions about the industry’s 2–5 years hori-
zon. The 3DLife grand challenge calls for demonstrations
of technologies that support real-time realistic interaction
between humans in online virtual environments. In order to
stimulate research activity in this domain the 3DLife con-
sortium has provided a scenario for online interaction and
a corpus to support both the investigation into potential
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solutions and allow demonstrations of various technical
components.

More specifically, the proposed scenario considers that
of an online dance class, to be provided by an expert Salsa
dancer teacher and delivered via the web. In this scenario,
the teacher will perform the class, with all movements cap-
tured by a state of the art optical motion capture system.
The resulting motion data will be used to animate a realis-
tic avatar of the teacher in an immersive online virtual bal-
let studio. Students attending the online master-class will
do so by manifesting their own individual avatar in the vir-
tual dance studio. The real-time animation of each student’s
avatar will be driven by whatever 3D capture technology
is available to him/her. This could be captured via visual
sensing techniques using a single camera, a camera network,
wearable inertial motion sensing, and/or recent gaming con-
trollers such as the Nintendo Wii or the Microsoft Kinect. The
animation of the student’s avatar in the virtual space will be
real-time and realistically rendered, subject to the granularity
of representation and interaction available from each capture
mechanism.

In this paper, we present the novel annotated dataset that
accompanies this grand challenge. This free and publicly
available dance corpus consists of data gathered at two sep-
arate site locations. At each site multimodal recordings of
Salsa dancers were captured with a variety of equipment, with
each dancer performing between 2 and 5 fixed choreogra-
phies. 15 dancers (6 women and 9 men) of differing exper-
tise have been recorded at SiteA and 11 dancers (6 women
and 5 men) at SiteB. The recording modalities captured in
each recording setup include multiple synchronised audio
capture, depth sensors, several visual spectrum cameras and
inertial measurement units. The total duration of the recorded
content is 1 h and 40 min for each single sensor, amounting
to 55 h of recordings across all sensors. In addition, this
publicly available dataset contains a rich set of dance chore-
ography ground-truth annotations, including dancer ratings,
plus the original music excerpts to which each dancer was
performing to.

Moreover, as not all data stream modalities are synchro-
nised, the corpus incorporates means to synchronise all of
the input streams, via distinctive clap motions performed
before each dance rendition. These clap motions can be
used to determine the delays between the different streams
as will be described in Sect. 8.2. Such delays as found by
a reference automatic system are provided along with the
dataset.

Although created specifically for the ACM Multimedia
Grand Challenge 2011, the corpus is free to be used for
other research and development purposes. This could include
research into approaches for 3D signal processing, computer
graphics, computer vision, human computer interaction and
human factors:

– 3D data acquisition and processing from multiple sensor
data sources.

– Realistic (optionally real-time) rendering of 3D data
based on noisy or incomplete sources.

– Realistic and naturalistic marker-less motion capture.
– Human factors around interaction modalities in virtual

worlds.
– Multimodal dance performance analysis, as a partic-

ular case of human activity analysis, including dance
steps/movements tracking, recognition and quality
assessment.

– Audio/video synchronisation with different capture
devices.

– Extraction of features to analyse dancer performance,
such as the automatic localisation and timing of foot steps
or automatic extraction of dancer movement fluidity, tim-
ing, precision (to model) and alignment with the music,
or another performer.

– Automatic extraction of music information such as tempo
and beat analysis or musical structure analysis.

This paper expands upon the initial publication [10] by
describing a multimodal synchronisation scheme that allows
us to provide the delays between the unsynchronised streams
of data, and by further developing potential applications for
the dataset proposed.

The rest of this paper is organised as follows: Sect. 2 high-
lights related corpuses and the major difference in the one
presented in this work. Section 3 provides an overview of the
data captured and incorporated into the corpus for each dance
performance. Section 6 details the hardware setup and cap-
ture of all data modalities used within the corpus. Section 4
provides an insight to how each dance performance was cap-
tured in terms of rehearsal, performance and capture. The
choreographies used in the corpus are detailed in Sect. 5,
while the ground-truth choreography annotations provided
with the corpus are outlined in Sect. 7. In Sect. 8, we provide
details on the data post-processing and release to the com-
munity. Section 9 outlines possible fields of application for
the current dataset. Finally we provide concluding remarks
on the corpus in Sect. 10.

2 Related work

In this section, we review the datasets available to the com-
munity in the research fields related to our work.

The KTH database [19] contains 6 types of human actions
performed by 25 people in four different scenarios: outdoors,
outdoors with scale variation, outdoors with different clothes
and indoors. The Weizmann human action dataset [6] con-
tains 90 low-resolution video sequences showing 9 different
people, each performing 10 natural actions. The backgrounds
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are static and the foreground silhouettes are included in the
dataset. KTH and Weizmann databases have been extensively
used for the evaluation and comparison of single-view video
human action recognition algorithms. The Assisted Daily
Living (ADL) dataset [16] is another single-view database
that contains high resolution videos of ten complex daily
activities.

Regarding multi-view and 3D activity databases, several
researches have created their own databases for verifying
their implemented approaches.

The IXMAS [26] dataset contains 11 actions each per-
formed 3 times by 10 actors. The multi-view acquisition
is achieved using five Firewire cameras, with static back-
ground and illumination settings. Each dataset contains the
raw videos, camera calibration files, extracted silhouettes
using background subtraction, as well as the associated
3-D models obtained from these images by using multi-view
camera reconstruction software based on visual hulls.

The HumanEva dataset [22] consists of two parts:
HumanEva-I and HumanEva-II. HumanEva-I contains data
from four subjects performing a set of six predefined actions
in three repetitions (twice with video and motion capture, and
once with motion capture alone). Each sequence is recorded
by three colour and four grayscale cameras and a synchro-
nized motion capture system that provides the 3D body poses
of the subjects. HumanEva-II contains only two subjects per-
forming an extended sequence of actions. However, for the
capturing a more sophisticated hardware system is used than
HumanEva-I, that consists of four colour cameras and a better
quality motion capture system.

The i3DPost multi-view human action dataset [11] is a cor-
pus containing multi-view 3D human action/interaction data.
This database contains videos of 8 persons and 12 actions
captured from 8 high resolution cameras. Moreover, there are
sequences that capture the basic facial expressions of each
person. The multi-view videos have been further processed
to produce a 3D mesh at each frame describing the respective
3D human body surface.

MuHAVi human action video database [23] has been cre-
ated using eight cameras in a challenging environment. The
dataset includes 17 action classes performed by 14 actors. A
subset of action classes has been used to manually annotate
the image frames and generate the corresponding silhouettes
of the actors. Annotated silhouettes provide a useful ground
truth for scientists to evaluate their algorithms.

The CMU motion capture database [13] mainly aims at
advancing research on human gait as a biometric. The data-
base contains 25 individuals performing 4 different walking
patterns on a treadmill. All subjects are captured using six
high resolution colour cameras distributed evenly around the
treadmill.

CASIA action database [24] is a collection of sequences of
human activities captured outdoors by cameras from different

angle of view. The sequences include 8 types of actions
performed by 24 subjects and 7 types of 2 person interac-
tions performed by 2 subjects. Videos sequences are recorded
simultaneously with three static non-calibrated cameras from
different viewing angles.

WARD (Wearable Action Recognition Database) [27]
consists of continuous sequences of human actions measured
by a network of wearable motion sensors. The wireless sen-
sors are instrumented at five body locations: two wrists, the
waist and two ankles. There are 20 human subjects that pro-
duce a set of 13 action categories that covers some of the
most common actions in a human’s daily activities.

The majority of the aforementioned databases contain
simple human actions captured by multiple synchronised
cameras. However, to the best of the authors’ knowledge,
there has been no previous research datasets recorded con-
currently through multiple diverse modalities capturing the
visual spectrum, audio, inertial motion and depth informa-
tion; nor has there been multimodal datasets focusing on
complex types of human activites such as dance.

3 Corpus overview

The dance corpus we present provides both synchronised
and unsynchronised multi-channel and multi-modal record-
ings of Salsa dance students and teachers. Within the corpus,
dance performances were captured at two seperate sites. An
overview of the two multi-modal capture setups (one for each
data capture site) is provided in Fig. 1. Details of all equip-
ment setup will be described in Sect. 6.

The setup for each site differs slightly in terms of equip-
ment specifications and equipment locations—however, the
following data was recorded regardless of the recording site:

– Synchronized multi-channel audio of dancers’ step
sounds, voice and music. The environments at SiteA and
SiteB recorded 16 and 14 channels, respectively, con-
sisting of 7 overhead microphones, 1 lapel microphone
worn by the dancer and the remaining channels recorded
by on-floor piezo-electric transducers.

– Synchronised camera video capture of the dancers from
multiple viewpoints covering whole body: SiteA and
SiteB used five and six cameras, respectively.

– Inertial sensor data: captured from five sensors worn on
the dancer’s body: both wrists, both ankles and around
the waist.

– Depth maps for dancers’ performances: captured using a
Microsoft Kinect.

– Original music excerpts: three short excerpts sampled
from two distinct Salsa tracks.

– Camera calibration data.
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Fig. 1 Recording setup

– Ground-truth annotations, including: musical annotation
(tempo and beats), choreography annotation (step labels
and ideal timing) and performance ratings awarded to
each dancer by the teacher.

In addition, at capturing SiteA, dancers were also simul-
taneously captured using four additional non synchronised
video captures covering a number of areas of their bodies.

The modalities that were synchronised during capturing
include 16 channels audio data, multi-view videos captured
with unibrain cameras (SiteA) and PixeLink cameras (SiteB).
During post processing, synchronisation is achieved between
audio and WIMU data, audio and different subsets of video
data. Synchronization details will be more thoroughly dis-
cussed in Sect. 8.2.

A total of 26 subjects were recorded performing 2–5 pre-
defined Salsa choreographies (depending on their level of
ability). Multiple takes for each choreography are included
in the corpus, with performances lasting approximately
20–40 s.

4 Recording protocol

Each dancer was recorded multiple times performing each
time one of five pre-defined choreographies. For every new
dancer, the recording session started with a preparation phase
during which he/she was equipped with the wearable record-
ing devices and given instructions regarding the proceedings
of the recordings and the choreographies to be performed
(see Sect. 5). Next, the dancer was given time to rehearse
these choreographies until he/she felt ready to be recorded.
Only the choreographies that could be mastered by the dancer
(after a reasonable rehearsing time that varied from 5 to
30 min for each choreography) were hence recorded. For each
choreography a number of takes were captured to account for
potential defects. The number of takes recorded varied from
one dancer to another depending on their time availability.
The goal was to try hard to obtain, for each choreography,
at least two takes where the dancer would finish the whole
choreography (without stopping in the middle).

The recording started with the calibration of the camera
network, which was repeated at various times during the
entire session to ensure that the calibration data was reliably
refined over time. It was performed using a 5 × 4 squared
chessboard calibration pattern with square size of 15 cm. The
square size was set to be large enough so that the chessboard
pattern was depicted clearly in the video of the cameras. This
pattern was placed on the dancing stage.

While the signals captured by some subsets of sensors are
perfectly synchronised, namely all audio channels (except
for the audio streams of the mini DV cameras), synchroni-
sation is not ensured across all streams of data. To minimise
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this inconvenience, all dancers were instructed to execute a
“clap procedure” before starting their performance, where
they successively clap their hands and tap the floor with each
foot. Hence, the start time of each data stream can be syn-
chronised (either manually or automatically) by aligning the
clap signatures that are clearly visible at the beginning of
every data stream.

5 Music and choreographies

Salsa music was chosen for this dance corpus as it is a music
genre that is centred at dance expression, with highly struc-
tured, yet not straightforward rhythmic structures. The music
pieces used were chosen from the Creative Commons set of
productions to allow us to easily make them publicly avail-
able. Three short excerpts from two distinct tracks (of two
distinct albums) at different tempos were extracted and used
along with a forth excerpt consisting of a Son Clave rhythmic
pattern [1] in all dance sessions. All the song excerpts used
are provided in the database at 44.1 kHz stereo.

Each dancer performed two to five solo Salsa choreogra-
phies among a set of five pre-defined ones. These chore-
ographies were designed in such a way as to progressively
increase the complexity of the dance steps/movements as
one moves from the first to the last one. They can be roughly
described as follows:

C1 Four Salsa basic steps (over two 8-beat bars), where no
music is played to the dancer, rather, he/she voice-counts
the steps: “1, 2, 3, 4, 5, 6, 7, 8, 1, …, 8” (in French or
English).

C2 Four basic steps, one right turn, one cross-body; danced
on a Son clave excerpt at a musical tempo of 157 BPM
(beats per minute).

C3 Five basic steps, one Suzie Q, one double-cross, two
basic steps; danced on Salsa music excerpt labelled C3
at a musical tempo of 180 BPM.

C4 Four basic steps, one Pachanga tap, one basic step,
one swivel tap, two basic steps; danced on Salsa music
excerpt labelled C4 at a musical tempo of 185 BPM.

C5 A solo performance mimicking a duo, in the sense that
the girl or the boy is asked to perform alone movements
that are supposed to be executed with a partner. The
movements are: two basic steps, one cross-body, one girl
right turn, one boy right turn with hand swapping, one
girl right turn with a caress, one cross-body, two basic
steps; danced on Salsa music excerpt labelled C5 at a
musical tempo of 180 BPM. Figure 2 gives visualisa-
tions of the timing of basic steps for men.

C6 Whenever possible a real duo rendering of choreography
C5 has been captured. It is referred to as C6 in the data
repository.

The dancers have been instructed to execute these chore-
ographies respecting the same musical timing, i.e. all dancers
are expected to synchronise steps/movements to particular
music beats. It is also important to note that the dancers have
been asked to perform a Puerto Rican variant of Salsa, and
are expected to dance “on two”.

Bertrand is considered as the reference dancer for men
and Anne-Sophie K. as the reference dancer for women, in
the sense that their performances are considered to be the
“templates” to be followed by the other dancers. The videos
of Bertrand and Anne-Sophie were actually played to the
student dancers during their training, asking them to mimic
the performance of the reference dancers. It is worth noting
that dance steps for men and women are not identical as they
are designed to complement each other in the partnered dance
routines.

6 Recording equipment setup

The specifics of each capture modality will be described in
detail in the following sections using Fig. 1 as reference. It
should be noted that all data is recorded and provided in open
formats.

6.1 Audio equipment

The audio capture setup was designed to capture the dancer’s
voice and step-impact sounds in such a way to allow users
of the dataset to effectively exploit sound source localisa-
tion and separation technologies. The environments at SiteA
and SiteB were recorded using 16 and 14 perfectly syn-
chronised channels, respectively. Eight microphones were
placed around the dance capture area: seven Schoeps omni-
directional condenser microphones: placed overhead of the
dance area; and one Sennheiser wireless lapel microphone
positioned to capture the dancer’s voice. In addition, on-floor
acoustic sensors were used to focus on the dancer’s step-
impact sounds, namely four acoustic-guitar internal Piezo
transducers, and only at SiteA Bruel & Kjaer 4374 piezoelec-
tric accelerometers (used with a charge conditioning ampli-
fier unit with two independent input channels). The position
of the microphones and acoustic sensors is given in Fig. 1.

Recording was performed using two Echo Audiofire Pre8
firewire digital audio interfaces controlled by a server based
on Debian with a real-time patched kernel that runs an open-
software solution based on Ffado, Jack and a custom appli-
cation for batch sound playback and recording. Accurate
synchronisation between multiple Audiofire Pre8 units was
ensured through Word Clock S/PDIF.

All the channels were encoded in separate files in mono
at 48 kHz with a 24-bit precision (but the sample encod-
ing in the corresponding files is 32-bit Floating Point PCM
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Fig. 2 Basic steps for men

in order to facilitate reading the generated audio files using
standard audio software). The on-floor positions of the Bruel
& Kjaer and Piezo sensors, as well as the spacing between the
Shoeps microphones are provided in the corpus. The music
was played to the dancers by a PC through amplified loud-
speakers placed in the dance rooms as shown in Fig. 1.

Audio calibration During the recording at SiteA, audio cal-
ibration was performed in order to provide a way to localize
the positions of the dancer’s feet on the dance floor using
step-impact sounds. This calibration procedure consisted of
hitting the floor with a metal tip at different known loca-
tions on the dance floor board. For SiteA, the dance floor was
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Fig. 3 Sound propagation of the foot steps noise through the dancing
board to the vibration sensors and through the air to the microphone
array

made up with two medium-density fiberboard (MDF) panels
of 2 m × 1 m. Each panel was hit several successive times
over a regular grid of points. Hence, we provide a set of audio
calibration measurements at 92 positions on the 2 boards.

Based on this calibration, one can elaborate localization
methods to retrieve the positions of the feet according to
the audio signals of the steps on the dancing board. Due
to the exact synchronization of the different audio channels
and the fixed position of the sensors, the delays of arrival of
the sound produced by a step at the different sensors can be
used to determine the sound source localization and thus, the
position of the foot on the dancing board. Figure 3 shows an
illustration of the sound propagation from the sound source
(the foot step) to the vibration sensors and to the microphone
array. Such localization methods rely on a physical model of
the sound propagation in the air and/or in the board material.
In that case, the calibration signals can enable one to estimate
the physical parameters of the models (speed of sound, delays
or positions between the sound source and the sensors).

Alternate localization methods could rely on pattern
recognition approaches. For such methods, the calibration
signals could be considered as references or used as a train-
ing database for either classification or regression methods.

6.2 Video equipment

6.2.1 Synchronised video equipment

For the capture at SiteA, five firewire CCD cameras (Uni-
brain Fire-i Color Digital Board Cameras) were connected
to a server with two FireBoard-800 1394b OHCI PCI
adapters installed. Three cameras were connected to one
PCI FireBoard-800 adapter, and two to the second, thereby
allowing the network load to be distributed between the two
adapters. The server had the UbCore 5.72 Pro synchronisation

software installed, which provided the interface for the cen-
tralised control of the connected cameras, including the syn-
chronized video capturing and the adjustment of the captur-
ing parameters. The parameters of the video capture were
defined to be 320 × 160 pixels at 30 frames/s with colour
depth of 16 bits. In the dataset, the Unibrain camera data was
decoded from MJPEG to raw AVI and stored as ZIP archives.
However, the camera synchronisation at SiteA was controlled
by software and therefore, it was not perfectly accurate. As
a consequence, very slight variations appeared in the total
number of the frames recorded by each synchronized cam-
era. This is discussed and corrected in the post-processing
stage—see Sect. 8.1.

The equipment for SiteB is different however, with the
cameras synchronized via hardware. At SiteB, the viewpoints
of U-Cam 1 to U-Cam 5 were replicated by six PixeLink 1.3
mega pixel colour PL-B742 cameras, labelled Cam1 to Cam6
in Fig. 1b. The PixeLink cameras were synchronized using
a common triggering signal, which was a square waveform
signal generated by a digital function generator and a trig-
gering frequency set to be 15 Hz. Each cycle triggered the
capture of single image frame for each camera. All captured
frames using these cameras are stored in BMP format in the
dataset.

6.2.2 Non-synchronised video equipment

For the SiteA data capture, two standalone, non-synchronised,
digital video cameras (both with audio) were used to cap-
ture the dancers from differing angles. The first shooting the
dancers’ feet, with the second DV camera shooting the torso.
In addition, at SiteA two additional non-synchronised video
data streams were also acquired using Microsoft Kinect cam-
eras. The first Kinect camera was angled to cover the whole of
the dancer’s body from the front, while the second was angled
to the upper-body of the dancer and taken from the side. In
SiteB only one of the four non-synchronised streams was
replicated, with the first Kinect camera angle being recap-
tured.

In this dataset both the Kinect cameras were captured at
30 Hz and stored using the OpenNI-encoded (.ONI) data
format (see next section). The videos from both DV cameras
were first stored on tapes before being transferred to a PC
using a proprietary application. They were encoded using
the cameras native DV video codec with 720 × 576 pixels
at 25 frames/s, with the audio streams encoded as PCM S16
stereo at 32 and 48 kHz, respectively for the feet and torso
cameras.

6.2.3 Kinect depth stream

In both of the data capture sites a Kinect depth data stream
was acquired from Kinect 1 (see Fig. 1a). This data stream
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Fig. 4 Skeleton tracking for the dancer Helene

was synchronised with the Kinect video stream (described in
the previous section) and both were simultaneously captured
and stored using the OpenNI drivers/SDK and the OpenNI-
encoded (.ONI) data format [2].

The OpenNI SDK provides, among others, a high-level
skeleton tracking module, which can be used for detecting the
captured user and tracking his/her body joints. More specifi-
cally, the OpenNI tracking module produces the positions of
17 joints (head, neck, torso, left and right collar, L/R shoul-
der, L/R elbow, L/R wrist, L/R hip, L/R knee and L/R foot),
along with the corresponding tracking confidence. An over-
lay of the extracted skeleton (using the OpenNI SDK) on the
Kinect depth stream can be seen in Fig. 4.

6.3 Inertial measurement units

Data from inertial measurement units (IMUs) were also
captured with each dance sequence. Each sensor streamed
accelerometer, gyroscope and magnometer data at approxi-
mately 80–160 Hz. Five IMUs were placed on each dancer;
one on each dancer’s forearm, one on each dancer’s ankle,
and one above their hips. Each IMU provides time-stamped
accelerometer, gyroscope and magnetometer data for their
given location across the duration of the session. These mea-
surements are stored as raw ASCII text. A sample of the IMU
data is shown in Fig. 5.

7 Ground-truth annotations

Various types of ground-truth annotations are provided with
the corpus, namely:

– Manual annotations of the music in terms of beats and
measures, performed by a musician familiar with the
salsa rhythm, given in Sonic Visualiser [7] (.svl) format
and ASCII (.cvs) format.

– Annotations of the choreographies with reference steps
time codes relative to the music also given in Sonic Visu-
aliser (.svl) format and ASCII (.cvs) format, these anno-
tations were acquired using the teachers’ input; they indi-
cate the labels of the salsa movements to be performed
with respect to the musical timing. An example of this
type of annotation is depicted in Fig. 6.

– Ratings of the dancers’ performances assigned to dancers
by the teacher Bertrand.1

The dancers’ ratings are given as an integer score between
1 and 5, 1 being poor and 5 excellent, across five evaluation
axes:

“Upper-body fluidity” evaluates the fluidity of the dan-
cer’s upper-body movements.
“Lower-body fluidity” evaluates the fluidity of the dan-
cer’s upper-body movements.
“Musical timing” evaluates the timing of the executed
choreography movements/steps with respect to the music
timing, the ideal timing being given in the choreography
annotation files placed in the music/folder.
“Body balance” evaluates the state of balance or quality
of equilibrium of the dancer’s body while he/she executes
the choreography.
“Choreography” evaluates the accuracy of the executed
choreography; a rating of 5 is attributed to a dancer as
soon as he/she accurately reproduces the sequence of
steps of the choreography, quite independently from the
quality of execution of each single figure.

8 Data preparation and release

A number of post-processing stages were undertaken in order
to ease the use of the corpus. Firstly, only valid recording
takes were incorporated into the corpus. We considered as
valid any take during which the dancer could finish the exe-
cution of the whole choreography (without stopping in the
middle), and all modalities could be captured properly (with-
out any technical defects). Secondly, the various streams of
data were visually inspected and data manually edited to crop
out irrelevant content ensuring the clap event (described in
Sect. 4) would occur within two seconds from the beginning
of each recording modality. As such, although some of the
data streams are not fully synchronised, the maximum offset
of any one modality to another is set to two seconds, allowing
users to more easily use multiple sets of unsynchronised data
modalities.

1 More ratings by other experienced Salsa dancers will be provided in
the near future
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Fig. 5 Inertial sensor data for right ankle of dancer Bertrand

Fig. 6 Beat, measures and
choreography annotations

8.1 Unibrain capture post-processing

The camera synchronisation at SiteA was controlled by soft-
ware (see Sect. 6.2.1), which didn’t provide perfect synchro-
nisation. Inaccurate synchronisation was caused by delays in
the time required for the software to propagate the commands

of starting and stopping the capturing across the camera net-
work. As a result, very slight variations (<12 frames) were
appeared in the total number of the frames recorded by each
camera. Based on technical specifications, the most likely
possibility is that the redundant frames per captured video
sequence were equally split between its beginning and its end.
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Fig. 7 Overview of synchronisation strategy

Hence, the following post-processing procedure was applied
to remove the redundant frames from each captured video
sequence.

Let us assume that the total number of the recorded frames
by each of five cameras (U-Cam 1 to U-Cam 5) is N1 to N5,
while N3 is the minimum number of frames that will be used
as a common basis to equalise the number of frames recorded
by the rest of the cameras. For instance, in order to compen-
sate delay in the video recorded by U-Cam 1, so as to have the
same number of frames with the video recorded by U-Cam
3, when N1 − N3 is an even number, (N1 − N3)/2 frames are
removed from the beginning of U-Cam 1’s frame sequence
and (N1 − N3)/2 frames from the end of the sequence. Oth-
erwise in case N1 − N3 is odd, (N1 − N3 + 1)/2 frames are
removed from the start and (N1 − N3 −1)/2 frames from the
end of the sequence. The same procedure is applied to frame
sequences recorded by U-Cam 2, U-Cam 4 and U-Cam 5,
respectively. Thus, the resulting post-processed recordings
have equal number of frames.

However, this post-processing procedure does not ensure
that the video streams are perfectly synchronized, since it
is based on the most possible circumstance that the redun-
dant frames are equally split between the start and the end
of the video sequence, which is true in most but not in all
cases. Therefore, the synchronisation procedure described in
Sect. 8.2 is followed in order to compensate more reliably the
time delays that lead to variation in the total number of frames
captured by each camera. Aside from video synchronisation,
the procedure in Sect. 8.2 is actually used to synchronise all
heterogeneous data streams.

8.2 Multi-modal synchronisation

Figure 7 gives an overview of our approach to synchronisa-
tion between the heterogeneous streams of data recorded.

The details of the different synchronisation components
are given hereafter. To understand the rationale behind this
synchronisation scheme it is important to keep in mind that

some subsets of data streams are already synchronised via
hardware, these include: subset S1 consisting of data from
16 audio channels, subset S2 composed of video streams
of 5 UniBrain cameras(not perfectly synchronised as men-
tioned in Sect. 8.1), and subset S3 that is the different WIMU
signals. Therefore, it is sufficient to synchronise instances of
each subset with the other data streams to achieve overall syn-
chronisation. As can be seen from Fig. 7, the audio modality
is used as a bridge to synchronise other types of modalities.
The procedure is as follows:

– Synchronise the videos taken by the feet and torso cam-
eras using audio-to-audio synchronisation between the
audio streams of these videos (described in Sect. 8.2.1).

– Synchronise one of the audio channels of S1 with either
audio streams of the feet or torso cameras, using the same
audio-to-audio synchronisation method.

– Synchronise one of the audio channels of S1 with the
WIMU signals in S3 (described in Sect. 8.2.2).

To complete overall synchronisation, one is left only with
the problem of synchronising the videos of feet/torso cameras
with the ones captured by the Kinects and UniBrain cameras,
which is addressed in Sect. 8.2.3.

8.2.1 Audio-based synchronisation

Audio-to-audio synchronisation is achieved by first estimat-
ing the signals energy envelopes, then using a simple cross-
correlation measure between these envelopes. The delay
between the two signals is deduced as the time-lag that needs
to be applied to one data stream in order to obtain maximum
cross-correlation. The audio envelopes are estimated by com-
puting the energy values in 5-ms local audio frames with a
1-ms hop size. The sampling frequency of the envelopes is
thus 1,000 Hz, hence allowing us to speed-up the process
compared to a situation where cross-correlation measures
would be taken directly from the original audio signals whose
sampling frequencies can be as high as 48 kHz. The other
advantage of this approach is that it can cope with the fact
that some audio streams are sampled at differing frequen-
cies, for example the audio stream of the foot camera is at
32 kHz while signals from S1 are sampled at 48 kHz. Further-
more, it has been found unnecessary to consider the whole
signal durations to achieve this synchronisation, rather only
the first few seconds of each recording is taken, covering
the initial clap event and the start of the music (on record-
ings with music). The whole procedure has been validated by
listening tests (across all the recordings) where a reference
audio stream (from the feet camera) was played along with
any of the other delayed streams to confirm that they became
synchronous.
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In the challenge scenario, all dancers are expected to exe-
cute the same choreographies and synchronise their move-
ments to the same background music. Therefore, synchronis-
ing the performances of two dancers is quite straightforward
as it solely entails synchronising the recorded music signals
relating to each dancer, that is channel 5/6 recordings of a
dancer A with channels 5/6 recordings of dancer B. This is
achieved using the previously described procedure.

8.2.2 Synchronisation of WIMUs

Synchronisation between audio and WIMUs is achieved by
maximising the cross-correlation between a specific WIMU
and audio features around the clap event. These features are
designed to characterise the clap event signature. The audio
feature employed here is the output of an onset detection
component [4] applied to the audio signal of channel 20, i.e.
one of the overhead Shoeps microphones that clearly captures
the sound of hands and feet claps.

The WIMU synchronisation feature exploits the accele-
rometer signal of both wrist sensors. A clap will appear as a
large spike in the accelerometer signal of both wrist WIMU
accelerometers simultaneously. To detect this event, all three
axes are combined for each sensor. The average and max-
imum amplitudes, and their corresponding timestamps are
calculated using 150-ms sliding window with 10-ms hops.
The window with the largest variance for both WIMUs is
identified as the clap signature. As the sampling frequency
of the audio feature is 360 Hz (due to the signal analysis
parameters of the onset detection module) and the WIMU
feature is 100 Hz, the WIMU frequency is upsampled to that
of the audio stream before computing the cross-correlation.

8.2.3 Multi-view video synchronisation

In this section, we describe the approach to calculate the
time shift between two videos taken from unsynchronised
cameras. The videos can be of different quality and frame
rate. Temporal features are extracted for every video frame.
Correlation-matching between features from two different
videos is then used to obtain the offset between them. We
also employed a method to detect the dancer’s upper body
to locate the area for feature extraction and improve the syn-
chronisation accuracy.

The temporal features used for video temporal alignment
are based on appearance changes [25]. This approach is suit-
able when cameras are static, and it does not require a high
level of scene understanding. The total amount of appear-
ance change between two successive frames is calculated for
each frame and the values are interpolated on a 1-ms time
grid in order to achieve sub-frame accuracy. The time shift
between two videos is obtained as the value that maximises

the normalised correlation between the temporal features of
each video.

The frame region used to calculate the appearance change
should be chosen so that it contains only the moving objects
(or part of moving objects) visible in both videos. As such, for
the 3DLife dataset we use an upper-body detection method to
locate the dancer’s upper-body movements, as some videos
in the used dataset do not capture the whole body. Figure 8
shows temporal features for the DV torso camera and the
Kinect camera, respectively.

In order to improve the synchronisation accuracy, unex-
pected object movement in the video sequence should be
excluded from the temporal features calculation. In the orig-
inal work [25] this is achieved by splitting video frames into
sub-regions of regular size and iteratively excluding sub-
regions that have negative impact on the correlation between
two video sequences. As this trial and error approach is inef-
ficient in terms of computational cost, we employ a state
of art upper-body detection algorithm [8] to facilitate adap-
tive selection of regions for temporal features calculation as
opposed to searching sub-regions with negative impact iter-
atively. In this work, the algorithm uses trained part-based
models combined with an optional face detector to improve
the detection performance. Figure 8 (top row) shows the
detection results applied to the videos captured using the
Microsoft Kinect and the DV camcorder. By applying tempo-
ral features and correlation calculations only within detected
regions, the synchronisation accuracy is improved.

We evaluated the described approach using videos from
the dataset. A total of 103 video sets were included in this
evaluation (each video set includes: five UniBrain videos,
torso video and feet video recorded by DV camcorders, and
two videos recorded by Kinects). The average error of syn-
chronisation was within one frame, which is quite accurate
as it corresponds to around 30–40 ms in time.

The time shifts for all videos in the dataset were calcu-
lated relative to the videos taken from the feet camera—the
reference camera. These time shifts were added to the dataset
as an additional useful data to be used in applications requir-
ing synchronised multi-view videos. The accurately synchro-
nised data was further analysed and augmented for presenta-
tion in an original software application [12] for an enhanced
dance visualisation experience.

8.3 Data release

Since May 2011, the dance corpus for the 3DLife ACM
Multimedia Grand Challenge 2011 has been made publicly
available through a website, allowing anyone to download it
through FTP. Researchers are also free to submit work for
publication to any relevant conferences/journals/etc. outside
of ACM Multimedia 3DLife Grand Challenge 2011.
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Fig. 8 Top row example for
upped body detection; bottom
row temporal features extracted
from the two videos

9 Fields of application

The 3DLife dance dataset can be exploited by the scientific
community to boost research in various emerging scientific
fields. In the following, we refer to some interesting applica-
tions that could take advantage of our dataset.

This multi sensor dataset is an adequate testbed to evaluate
algorithms relevant to human pose recovery. Human body
pose recovery is a fundamental task in human motion analysis
and in recent years there has been rapid progress regarding
markerless 3D pose recovery of humans from multi-view
video data. A recent framework for unconstrained 3D human
upper body pose estimation from multiple camera views in
complex environments is presented in [14].

Depth sensors provide an alternative technology for
human pose recovery. In particular, Microsoft’s Kinect is an
affordable solution for boosting research and innovation in
3D human pose recovery methods. The work in [21] pro-
poses a novel method for fast and accurate prediction of 3D
positions of body joints from a single depth image generated
by a single Kinect device. Another solution for handling the
pose recovery problem is to use measurements from wearable
inertial sensors attached to the person’s limbs [20]. The work
in [17] proposes a hybrid human pose tracker that combines
video data with inertial units measurements to compensate
for the drawbacks of each sensor type.

When human poses are estimated over time, the term
human motion analysis is adopted. Advances in human
motion analysis would benefit a wide spectrum of applica-
tions, especially in the domains of virtual reality, human-
computer interaction, surveillance and elderly monitoring.

A comprehensive survey on visual view-invariant human
motion analysis can be found in [15]. This work presents
recent developments in view-invariant human motion analy-
sis with an emphasis on view-invariant pose representation
and estimation, and view-invariant action representation and
recognition. While video-based human motion analysis has
received much interest during the last decades, the launch of
Kinect technology may provide a new insight in the human
motion analysis field.

The work in [3] describes a novel system that automati-
cally evaluates dance performances against a standard perfor-
mance and provides visual feedback to the performer in a 3D
virtual environment. In order to align and evaluate dance per-
formances, Kinect depth-maps from the current dataset are
considered to extract the motion of a performer via human
skeleton tracking. The framework for the automatic evalu-
ation of dancers performance is extended in [9] to include,
except for Kinect depth-maps, audio and WIMU modalities.
In [18] a classification system designed to recognize danc-
ing gestures in real-time and with high accuracy from Kinect
depth data is introduced.

The low cost of inertial sensors and their significant tech-
nological improvement in terms of size and power con-
sumption provides an alternative option for analysing human
motion. An extensive review of the literature related to the
techniques for classifying human activities that are per-
formed using inertial sensors is presented in [5]. This study
pinpoints that inertial sensor technology can be exploited,
among others, in remote monitoring of the elderly, rehabili-
tation and physical therapy, dance and ballet, sports science
and virtual reality.
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This multimodal dance corpus stands as a complex human
activity database that is challenging for developing and
testing human pose recovery and human motion analysis
approaches. Moreover, the multimodal nature of the collected
data allows the evaluation of methods that use diverse types
of input data (i.e. visual input, depth data and inertial mea-
surements), forming a convenient benchmark for comparing
algorithms that either use input data from a single type of sen-
sors or fuse data from different types of sensors for improved
performance. Concluding, the appealing features of the pre-
sented corpus could constitute it as a roadmap for the con-
struction of new databases with rich multi-source content.

10 Concluding remarks

In this work, we have presented a new multimodal corpus
for research into, amongst other areas, real-time realistic
interaction between humans in online virtual environments.
Although the dataset is tailored specifically for an online
dance class application scenario, the corpus provides scope
to be used by research and development groups in a variety
of areas. As a research asset the corpus provides a number of
features that make it appealing including: it is free to down-
load and use; it provides both synchronised and unsynchro-
nised multichannel and multimodal recordings; the novel
recording of dancer sound steps amongst other specific sound
sources; depth sensor recordings; incorporation of wearable
inertial measurement devices; a large number of performers;
a rich set of ground-truth annotations, including performance
ratings.

We believe that the provided corpus can be used to illus-
trate, develop and test a variety of tools in a diverse number of
technical areas. For instance within our research teams, this
dataset is currently being used to develop enhanced frame-
works for the automatic analysis and evaluation of human
activities (in particular dance performances) from multi-
modal recordings, including tasks such as (i) human motion
analysis, (ii) gesture/dance movement recognition, or (iii)
pose estimation using depth and inertial sensors in order to
make tracking more robust to self occlusions and subtle joint
orientation errors and trying to balance the demands between
accuracy and speed in real time human–computer interaction
applications.
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