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ABSTRACT

Amoeboid cell motility is characterised by the emission of protru-
sions at the cellular surface known as “blebs” [3]. Detection and
counting of these blebs is a crucial step towards the understanding
of the deformation and motility machinery. We propose an auto-
mated technique for bleb detection and counting from cells observed
in 3D fluorescence microscopy using spherical wavelet analysis. We
improve upon our previous work by adopting a stereographic projec-
tion algorithm, which greatly simplifies the manipulation of wavelets
on the sphere, leading to a straightforward analogy with traditional
wavelets on the plane. We illustrate the detection performance on a
real data set of protruding cells, where the proposed approach is able
to detect all blebs, and discuss the many possibilities offered by the
proposed toolbox for cell shape analysis in general.

Index Terms— Spherical wavelets, Shape analysis, Cell mor-
phology, Cell deformation, 3D microscopy

1. INTRODUCTION

Cell deformation and motility are dynamic cellular processes reg-
ulated by a complex machinery, and have direct implication on the
numerous key processes in biology, including development, immune
responses and invasive processes [1, 2]. Among the different modes
of migration adopted by motile cells, amoeboid motion is of particu-
lar interest, as it is adopted by some parasites upon infection as well
as metastatic cancer cells. Amoeboid motion is characterised by the
formation of protrusions at the cell surface (cf. Fig. 1), which in
some cases adhere to the substrate and initiate whole cell movement
[3]. A method of choice for studying this mechanism lies in fluores-
cence microscopy, where protruding cells can be observed over pro-
longed periods of time in 3D with limited invasiveness. In this work,
we are interested in extracting these protrusions at the cell surface
in a reliable manner, in a wish to better understand the dynamics of
amoeboid cells.

3D shape representation and analysis is a topic of active re-
search in the computer vision and signal processing communities,
especially since the advent of modern 3D acquisition and modelling
techniques. In the case of 3D biomedical and biological imaging,
extensive research is conducted toward the acquisition and analy-
sis of closed shapes at all spatial scales, from molecules [4] to cells
[5, 6] and up to entire organs [7, 8]. With the natural variability
of shape conformations within so-called homogeneous populations,
conventional shape descriptors (volumetric-based, curvature-based,
etc.) often lack either robustness or accuracy. Instead, a mathemat-
ical framework of choice for the analysis of such surfaces lies on
the sphere, where numerous signal processing techniques have been
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Fig. 1. Fluorescence microscopy image of an amoeboid cell under-
going protrusions. Left: before protruding. Right: after protruding.
Time between frames: 8 seconds

developed, notably in fields where spherical images are produced
[9, 10]. In this context, 2 major representation domains are typically
used: spherical harmonics and spherical wavelets. For spherical har-
monics (hereafter SPHARM), the signal of interest is projected onto
a basis of functions with global support (in analogy with Fourier
analysis), and are well suited for global conformation analysis [6].
However, in order to perform local surface analysis and extract fea-
tures such as cell protrusions, spherical wavelets are particularly well
suited, as they provide a function basis with local support.

Spherical wavelets generally come in two flavours, depending
on the way they are constructed. The first set of approaches relies
on a non-parametric, graph-oriented framework where wavelets are
constructed from any arbitrary mesh (not necessarily spherical) via
multi-scale decomposition and appropriate lifting schemes [9, 11,
12]. The alternative family of approaches relies on a group-theoretic
formulation of wavelet analysis, and extends the framework of over-
complete wavelets to the 2-sphere, by transposing into the spherical
domain the traditional operations used with wavelets on the plane
[13, 14]. Due to its strong analogy with classical wavelets, the frame-
work is well suited for the design of filters with custom properties,
such as steerability [15] and self-invertibility [16]. It was also re-
cently shown to provide a more accurate and compact set of descrip-
tors than traditional spherical harmonics in the context of biological
shapes [17]. Yet, to the best of our knowledge, feature detection in
biology remains to be achieved.

In this work we formulate our shape analysis problem using
over-complete wavelets on the sphere, and argue using experimen-
tal data that this framework is more robust to heterogeneous surface
data than the non-parametric version [18]. The remainder of the pa-
per is organised as follows: section 2 describes the mathematical
background of over-complete spherical wavelets; section 3 describes
its application to biological shape analysis; section 4 illustrates the
method with experimental results; section 5 concludes this work.



2. OVER-COMPLETE WAVELETS ON THE SPHERE

Defintion Let x(θ, ϕ) ∈ L2(S2) be a parameterisation of an initial
closed surface, with θ ∈ [0, π] and ϕ ∈ [0, 2π]. Traditionally, the
calculation of wavelet coefficients y is given by the inner product
between the signal x and corresponding wavelets with respect to the
scale n and a translation factor. On the sphere, the translation is
replaced by a rotation over the 3 Euler angles by α, β and γ, where
α ∈ [0, 2π] defines a rotation about the Z-axis, β ∈ [0, π] defines
a rotation about the Y-axis and γ ∈ [0, 2π] defines a final rotation
about the Z-axis. Given this notation, the spherical convolution of a
signal x by a filter h̃ can be written:

yn(γ, β, α) =

∫
S2

h̃∗n,γ,β,α(θ, ϕ) x(θ, ϕ) dΩ (1)

where h̃n,γ,β,α is the angle-dependent analysis filter at scale n, ∗ is
the complex conjugation, and dΩ = sin θ dθ dϕ. Unfortunately, h̃ is
dependent of the rotation angle, and computing a filter for each rota-
tion on the sphere is computationally intractable. A solution resides
in the SPHARM domain, where a direct connection can be estab-
lished between the SPHARM coefficients of h̃ and any of its rotated
versions:

h̃l,mn,γ,β,α = D
l,m
γ,β,α(h̃n), with (2)

D
l,m
γ,β,α(h̃n) =

l∑
m′=−l

Dl
mm′(γ, β, α) h̃l,m

′
n (3)

where l and m are the degree and order of the SPHARM decom-
position respectively, and Dl

mm′ are the elements of the so-called
Wigner D matrix, representing the irreducible unitary representa-
tions of weight l of all rotations in SO(3). It then comes that the
filter value for any angle (θ, ϕ) can be obtained via the inverse
SPHARM transform:

h̃n,γ,β,α(θ, ϕ) = Dγ,β,α(h̃n), with (4)

Dγ,β,α(h̃n) =

∞∑
l=0

l∑
m=−l

D
l,m
γ,β,α(h̃n) · Y l,m(θ, ϕ) (5)

These results imply that an unrotated filter bank {h̃n, hn} is suffi-
cient to fully define the spherical wavelet transform. Going back to
eq. (1), wavelet coefficients are now obtained as follows:

yn(γ, β, α) =

∫
S2

[
Dγ,β,α(h̃n)

]∗
(θ, ϕ) x(θ, ϕ) dΩ, (6)

while synthesis is given by:

x̂(θ, ϕ) =
∑
n

∫
SO(3)

[Dγ,β,α(hn)] (θ, ϕ) yn(α, β, γ) dρ (7)

where dρ = sinβ dαdβdγ.

Axisymmetric simplification The present framework stands for any
wavelet filter bank. In the specific case of axisymmetric filters how-
ever (as will be the case here), further simplifications are introduced.
Indeed, such filters are invariant by rotation about the Z-axis by def-
inition, implying that wavelets are now independent of γ, and that
∀m 6= 0, h̃l,m = 0. A small development in the SPHARM domain
(not shown here due to space limitations) leads to:

y(β, α)l,m =

√
4π

2l + 1
xl,mh̃l,0∗ (8)

Fig. 3. A Laplacian of Gaussian (LoG) filter with σ = 1, mapped on
the sphere by inverse stereographic projection.

which drastically simplifies the computation of the wavelet coeffi-
cients.

Stereographic projection and dilation The last component of the
framework is the construction and dilation of wavelets on the sphere.
In the group-theoretic paradigm, over-complete wavelets on sphere
are built using inverse stereographic projection of wavelets on the
plane [13], according to the following formula:

φS2(θ, ϕ) =

(
1 + tan2 θ

2

)
φR2

(
2 tan

θ

2
, ϕ

)
(9)

Thanks to this direct connection between the plane and the sphere,
dilation can be carried out in Euclidean space first, and then pro-
jected onto the sphere. Analytically, this gives:

φS2(θ, ϕ) =

(
1 + tan2 θ

2

1 + ( 1
d

tan θ
2
)2

)
·1
d
φR2

(
2 tan−1

(
1

a
tan

θ

2

)
, ϕ

)
(10)

where d is the dilation factor.

3. APPLICATION TO BIOLOGICAL SHAPE ANALYSIS

The analysis procedure for each cell surface is depicted in Fig. 2.
We describe below the choice of filter for the analysis as well as how
we threshold the final coefficients and extract the cell protrusions.

3.1. Choice of the wavelet filter

We conducted the wavelet analysis using the Laplacian of Gaussian
(LoG) filter, motivated by its popularity in other applications in bi-
ology for feature detection. The filter is characterised by a unique
parameter σ corresponding to the standard deviation of the underly-
ing Gaussian filter (and is illustrated on the sphere in Fig. 3):

LoG(x) = − 1

πσ4

[
1− x2

2σ2

]
e−x

2/2σ2

(11)

3.2. Wavelet coefficient thresholding

Once the wavelet coefficients are computed, we perform an auto-
mated threshold based on the universal approach of Donoho and
Johnstone [19], defined as follows:

λ =
MAD(yn)

0.6745

√
2 log(p) (12)



(a) (b) (c) (d)

Fig. 2. Overview of the analysis workflow. (a) Original cell surface. (b) Parameterised surface. (c) Wavelet coefficients superimposed on the
reconstructed surface. (d) Segmentation results. (a) and (b) are coloured with the same spherical signal (obtained after parameterisation) to
better visualise the distortions induced by the parameterisation process.

where p is the total number of Wavelet coefficients at scale n. It
is important to stress that this threshold is based on an asymp-
totic assumption, and therefore requires a large number of samples.
To follow this assumption, we increase the resolution of our ex-
tracted mesh surface by resampling the parameterised signal using
its SPHARM decomposition.

Once thresholded, a connected component algorithm is applied
on the final segmented mesh in order to reconstruct the areas of in-
terest.

4. EXPERIMENTAL RESULTS

4.1. Data acquisition and surface extraction

The model of study here is the uni-cellular parasite Entamoeba his-
tolytica, responsible for the amoebiasis disease. Prior to imaging,
parasites are stained with a fluorescent dye and placed in a 3D col-
lagen matrix for 30 minutes. The sample is then observed every 8
seconds for about 12 to 15 minutes under a Nipkow disk confocal
microscope equipped with a 25× objective, yielding time-lapse se-
quences with 90 to 120 time-points, each of 30 microns thick. The
total data set comprises 173 cells, from which we have manually se-
lected 26 cells that summarise the phenotypes observed across the
entire population.

After acquisition, cells are segmented and tracked automatically
using our 3D active meshes algorithm [20], which generates a tri-
angular mesh surface with homogeneous spatial resolution for each
cell tracked.

4.2. Detection results on real signals

Fig. 4 present detection results on static cells, while Figs. 5 and
6 present results on time-lapse sequences. These results are highly
encouraging: in each case, every extracted area corresponds to a
protruding area, and the size of each area matches quite accurately
the actual area representing the protrusion. Note that although we
are working with an isotropic filter, elongated protrusions are still
detected using the universal threshold (Fig. 4-right and Fig. 5). Re-
sults on time-lapse sequences of protruding cells (Figs. 5 and 6)
additionally indicate that robust tracking of protrusions can be con-
ducted, allowing to measure the dynamics of cell deformation. The
observed errors are either due to small protrusions that have not been
detected in the selected scale, or due to artefacts induced by the pa-
rameterisation process (cf. Fig. 2-(b)).

Fig. 4. Protrusion detection results on real cells. Top row: wavelet
coefficients superimposed on the original surface, colour-coded from
blue (low) to red (high). Bottom row: detected protrusions, pseudo-
coloured (dark blue indicates no detection).

Fig. 5. Detection results on a time-lapse sequence. Top row: wavelet
coefficients superimposed on the original surface, colour-coded from
blue (low) to red (high). Bottom row: detected protrusions, pseudo-
coloured (dark blue indicates no detection).



Fig. 6. Detection results on a time-lapse sequence. Top row: wavelet
coefficients superimposed on the original surface, colour-coded from
blue (low) to red (high). Bottom row: detected protrusions, pseudo-
coloured (dark blue indicates no detection).

4.3. Influence of the parameters and analysis scale

Current results have been obtained using σ = 1 for the LoG filter,
and only a single scale was used for the thresholding and surface
reconstruction (here scale 3). As expected, all protrusions which
are clearly visible have been detected by our method, while smaller
protrusions have been found in some cases and not others. From
a biological point of view, it is in fact visually challenging to assess
whether the smaller structures actually correspond to cell protrusions
and whether they should be detected or not.

Globally, these results perform more reliably than our previous,
non-parametric wavelet approach [18]. This is mostly due to the fact
that in the non-parametric approach, the number of coefficients is
highly limited by the subdivision level of interest, whereas in the
present case each scale of analysis is defined by a large number of
coefficients. This stability now permits us to dig in more details into
the influence of the size of the filter, and more importantly in investi-
gating multi-scale threshold approaches to detect smaller protrusions
that may not be detected accurately in the current setting.

5. CONCLUSIONS AND PERSPECTIVES
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