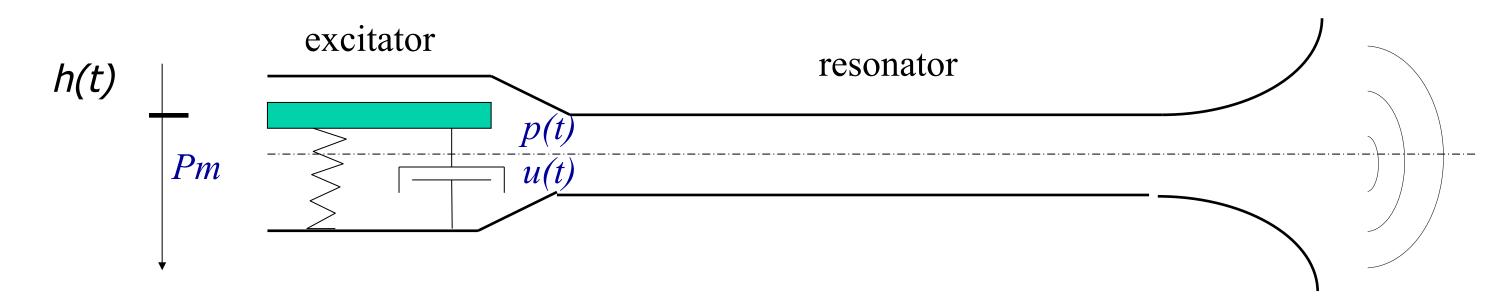


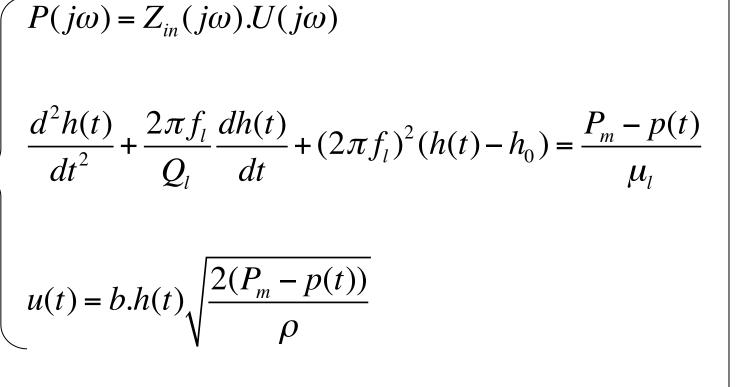
OPTIMIZATION OF BRASS INSTRUMENTS BASED ON PHYSICAL MODELING SOUND SIMULATIONS

Jean-François PETIOT¹, Robin TOURNEMENNE¹, Joël GILBERT²


⁽¹⁾: Laboratoire des Sciences du Numérique de Nantes (UMR CNRS 6004), Ecole Centrale de Nantes, France – Jean-Francois. Petiot@ec-nantes.fr

⁽²⁾: Laboratoire d'Acoustique de l'Université du Maine (UMR CNRS 6613), Le Mans, France

ABSTRACT


- physical modeling based simulations are integrated in the optimization process of the bore of a brass instrument, a trumpet
- the novelty of the approach lies in the fact that the objective function concerns the sound of the instrument, as simulated when in interaction with a virtual musician
- given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS) [1].

1. Physical modelling of brass

Coupling of a non-linear excitator (characterized by mechanical parameters) with a linear resonator (characterized by the input impedance Z_{in})

3 time-varying variables: opening height h(t) of the lips, volume flow u(t) and pressure in the mouthpiece p(t)

3. Problem formulation: minimization of an objective function J

 $\min J(x,\varphi)$

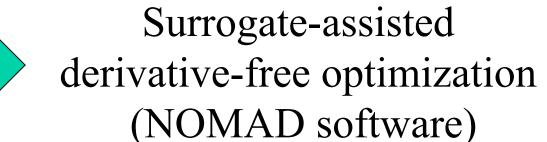
x: design variables (bore of the resonator) φ : set of embouchures (virtual musician)

Optimization framework

Set ϕ of embouchures

2. Simulations with the harmonic balance technique

In permanent regir	ne (frequency do	omain) p($(t) = \sum_{n=1}^{N} A_n \cdot c$	$\cos(2\pi nF)$	$t + \phi_n)$
Virtual musician embouchure	$P_{m}: \text{ pressure in the mouth} \\ f_{L}: \text{ resonance frequency of the lips} \\ \mu_{L}: \text{ mass per area of the lips} \\ \bullet \qquad \text{Amplitudes and phases of the} \\ \bullet \qquad \text{Simulations} \bullet \text{harmonics: } A_{l}, \ \phi_{l} \ \dots, \ A_{N}, \ \phi_{N} \\ \end{array}$				
Input impedance Z_{in}		Playing frequ			
		Definition		Notation	Value

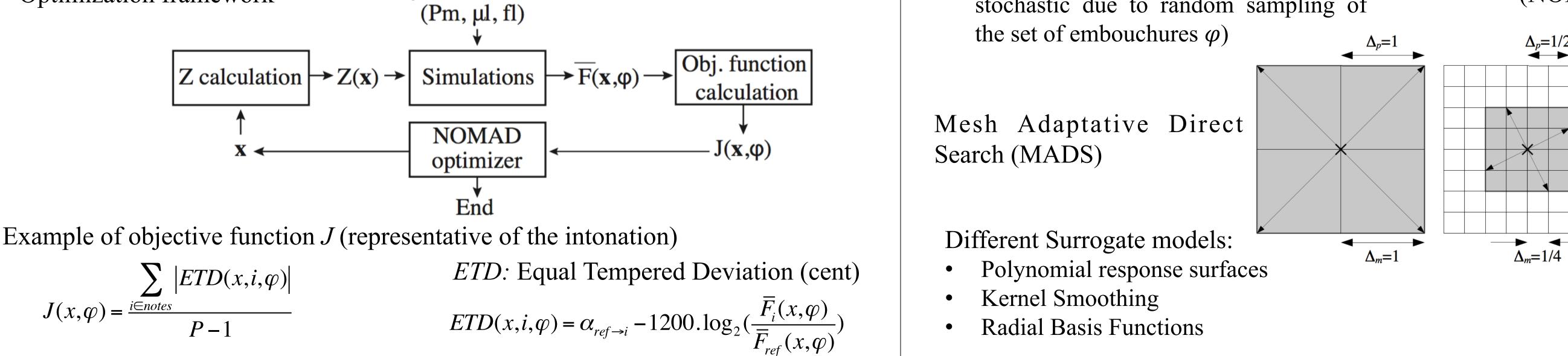

Control parameters of the simulations (virtual embouchure) [2]

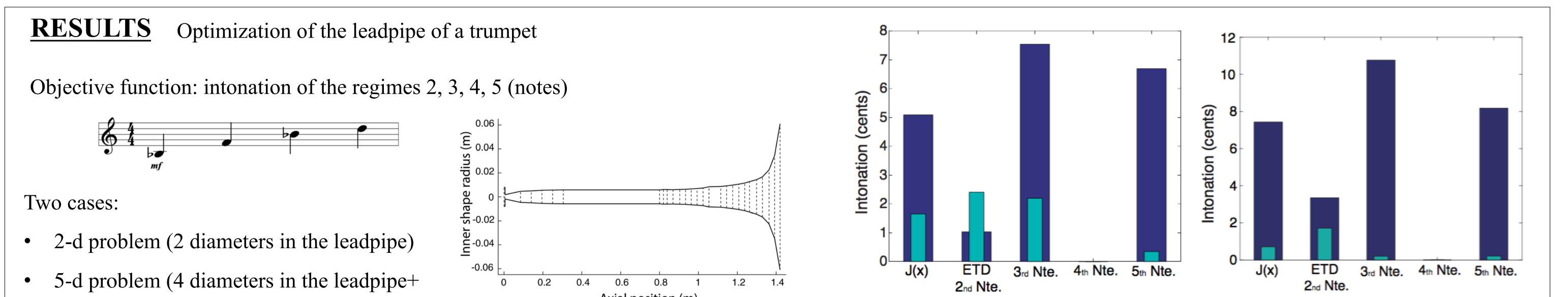
Definition	Notation	Value
Resonance frequency of the lips	f_l (Hz)	130 to 480
Mass per area of the lips	$\mu_l (kg/m^2)$	1 to 6
Pressure in the mouth	P_m (kPa)	6 to 9
Width of the lips	<i>b</i> (mm)	10
Rest value of the opening height	$H_0 (\mathrm{mm})$	0.1
Quality factor of the resonance	Q_l	3

4. Optimization method

The objective function $J(x, \varphi)$:

- Potentially heavy calculation time
- Derivative not available $(J(x, \varphi))$ is stochastic due to random sampling of




 $\Delta_p = 1/4$

××

 $\Delta_m = 1/16$

 $\Delta_p = 1/2$

Axial position (m)

Results of J and ETD for the 2-d problem

Results of J and ETD for the 5-d problem

CONCLUSIONS

- Alternative to an optimization based on the input impedance [2]
- Improvements of the intonation of trumpets based on simulations [3], with a reasonable computation time

- Possibility to define objective functions based on the spectrum of the sounds
- Possibility to optimize the spectrum of sounds subjected to constraints on the intonation \bullet

Acknowledgments to B. Talgorn and Pr. M. Kokkolaras from McGill University (Montreal) for their participation to this work

REFERENCES [1] Tournemenne R., Petiot J-F., Talgorn B., Kokkolaras M., Gilbert J. (2016). Brass instruments design using physics-based sound simulation models and surrogate-assisted derivative-free optimization. Journal of Mechanical Design, april 2017, Vol. 139, 0141401-1-011401-9.

[2] Wilfried Kausel (2001): Optimization of Brasswind Instruments and its Application in Bore Reconstruction, Journal of New Music Research, 30:1, 69-82.

[3] Petiot J-F., Gilbert J. Comparison of trumpets' sounds played by a musician or simulated by physical modeling. Acta Acustica united wih Acustica. Vol. 99, (2013), 629-641. DOI 10.3813/AAA.918642.

- ISMA 2017. International Symposium on Musical Acoustics, 18-22 June 2017, Montréal, CANADA -